Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility

by Njenga and Sherris

Discussant: Andrew Cairns

m(t,x) =crude death rates

Paper: "non-parametric" analysis of data

⇒ stylised facts for subsequent model building

Trend

• H_0 : m(t,x) has a unit root "stochastic trend"

• H_0 : $m(t,x) - \alpha - \beta t$ is stationary

Results seem mixed, although mainly unit root

Principal component analysis (PCA)

- One or two big PC's
- 6+ smaller factors
- Crude $m(t,x) \Rightarrow$ Poisson noise not filtered out \Rightarrow [a] $\epsilon(x,t)$ contain modest negative serial correlation [b] Underlying $m(t,x) \Rightarrow$ fewer PC's ???
- Poisson noise ⇒ randomness in PC3, PC4, ...

Cointegration of different countries

 H_0 : no cointegration

No evidence to reject H_0 , but limited data

Theme: Biological reasonableness

- All ages closely interconnected ⇒ one conclusion for all ages (e.g. unit root)
 - ⇒ here ??? portmanteau test across ages ???
- Unit root is reasonable
- Principal components should have a smooth shape

Theme: Biological reasonableness

 Two populations should not diverge over time (Li and Lee, 2005)

BUT: Limited data ⇒ difficult to prove

• $m(t,x) > 0 \Rightarrow$ e.g. model with $\log m(t,x)$