

- Longevity 5, New York -

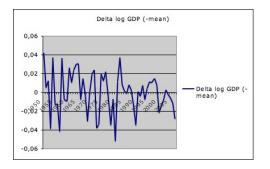
Stochastic Mortality, Macroeconomic Risks, and Life Insurer Solvency

K. Hanewald, T. Post, H. Gründl Humboldt Universität zu Berlin

Discussion

D. Bauer

Content


- Authors present dynamic asset-liability model for life insurer selling term life contracts
- → Key feature: Insurer's assets and liabilities (mortality) are correlated via a common dependence on the business cycle → GDP
- In a simulation study, "insolvency probability" as the risk measure is determined
- sensitivity analysis to age, portfolio size, equity level, and stock proportion
- Key finding: Dependence between economic conditions and mortality considerably influence results
- → Conclusion: It's crucial to take this dependence into account

Issue I: Are the considered correlations significant?

- ▶ The authors use a correlation of approx. $\rho = -40\%$ between mortality index κ_t and the GDP
- \rightarrow Estimation results based on 1989-2005 \rightarrow 16 data
- \rightarrow In Hanewald (2009), correlations of κ_t and $\Delta \log\{GDP\}$ are **not** found to be significant at the 10% level for 1991-2005
- \rightarrow In fact, the correlation is found to be approx. $\rho = +30\%$ for 1951-2005 period
- \rightarrow With pos. correlation: stocks \setminus mortality \setminus , \Longrightarrow insolvency probability would decrease in comparison to uncorrelated case
- Argumentation "broken trend": Is there evidence that the trend will not be broken again? Structural explanation in Hanewald (2009) via "obesity" unsatisfactory
- Conclusions far too strong/distinct

Issue II: Model

GDP modeled via geometric Brownian motion:

- → Business cycles... Impact on estimation, simulation results?
- Bond investment solely via GBM no hedging possible
- Discounting in Equations (13) and (14) based on physical measure

"My conclusions"

- √ Paper shows how correlations can be considered
- $\sqrt{}$ Paper shows that the impact **may** be considerable
- ? I think more care is required when interpreting/analyzing the results, both quantitatively and qualitatively conclusions too strong from my point of view
- → Suggestions:
 - To convince me of significant correlations, in particular continuously positive ones, more work is required. Possibly employ "structural" arguments (see e.g. Suen (2009)¹)
 - Part of the model could be improved. E.g. modeling of GDP, investment opportunities, etc.

Contact

Daniel Bauer dbauer@gsu.edu Georgia State University USA

www.rmi.gsu.edu

Thank you!